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The selection of the control process for a system in which the controlled 
object is subject to random changes is discussed. The controlling s&ion 
5 is formed, subject to the condition that the integral quality estimate 
is a minimum. This estimate is a given function of the off-balance of 
coordinates xi, the controlling action c and the rate of change iof 5 
during the transient process, The problem is investigated using the 
Liapunov-function methods [ 1,2 I, modified in aocord8nce with the prinoi- 
Pies of dynamic programming f 3.4 1. The present results generalize those 
reported in [ 5 1 to the case of stochastic systems. 

1. Preliminary remarks. Consider a control system in whit:; the 
transient process is described by the stochastic differential equations 
of perturbed motion 

dxi 

Here, xi are the deviations of the true values of the coordinates of 
the controlled vector quantity from the prescribed (unperturbed) values 

‘i =o (;=I, . . . . n), and 6 is the control action produced by the con- 
troller. The particular feature of the system is that it is subject to 
random changes during the control process. 'ibis is taken into account in 
Equation (1) by introducing the random variable q(t). 

We shall assume that fi are known continuous functions of their argu- 
ments which satisfy the Lipschitz conditions in the domain G of the 
Ix, 5, ~1 space, fil 0, . . . . 0, s(t)]= 0, and the variable q(t) 
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represents the Markov random process 
and provided the control action 6 is 
random transient process x(t). 

and E.A. Lidskii 

E 6, p, 79 f . Under these conditions 
known, Equations (1.1) describe the 

‘Ihe control action 6 of the controller will be determined from the 
condition 

J = \ .&f (0 [x1 (t>, . . . , .a;, (t), E (t)? g(t)]} dt = min 
6 

(1.2) 

where the symbol II denotes the mathematical expectation of the random 
quantity w which,is a given non-negative function of its arguments. Since 
(1.2) includes 6, we shall seek the equation for the optimum controller 
in the form* 

(1.3) 

‘Ihe aim of the present paper is to investigate the form of the func- 
tion 4 which would ensure the stability of the unperturbed motion Xi = 0 
(i=l, . . . . n) and would satisfy the condition (1.2). 

2. Formulation of the problem. Let PI Q/L 1 be the probability 
of an event Q subject to the condition L, M( ,o/Lit be the mathematical 
expectation of the random quantity o subject to the condition L and let 
o(At) be an infinitely small quantity of a higher order than At (the 
small quantity At is assumed to be positive throughout). 

Let us now describe the statistical properties of the random function 
q(t). Let us confine our attention to the case where there are two func- 
tions, namely q(a) and q(a, @, which describe the time changes of q(t) 
and are defined by [ 6, pp. 231-245 1 

P[~(t+At)==a/~(t)=a]=G-q(a)At+o(At) (2.1) 

P [y (t + At) = p, q (t -,& At) #a/q(t) = a] --- q (a, p) At --- o (At) (2.2) 

(c&P = I,..., III.+ I) 

* If the quantity i does not enter into the right-hand side of (1.2). 
then the equation for C$ can be sought in the form of the ideal con; 
troller 4 = 5t II, . . . , xn, q I. Among the arguments of the function 
< in (1.3) there is the function q. This means that it is assumed 
that q(t) can be measured and the corresponding signal can be fed 
into the controller. 
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i.e. the probability that q(t) will remain constant (q(t) = a) over the 
small interval At is approximately equal to 1 - q(a)At and the probabil- 
ity of the single change q(t) = a + q (t + At) = B in this interval is 
approximately equal to q(a, @)At. 

In accordance with [ 6, p. 242 1 , we shall assume that the realizations 

of the random process q(t) are the step functions q(P)(t) (except for a 
set of zero probability realizations which will be neglected). 

If the function 5 in (1.3) h as been chosen (and is continuous and 

satisfies, for example, 
;I:, 

the Lipschitz conditions with respect to Xi, 5, 
then for each realization q(P)(t) and for each initial condition 

4 iO8 0’ t = to 1 bations (1.1) and (1.3) define the continuous 

realization x(P)(no, 5 , 
random solution n(t), P 

to, t, ~‘P’), t(P)(xo, to, to, t, q(P) of the 
(t) describing the transient process in the 

system. If this random process is considered in the I xl, **-I x,, 59 d 
space, then it turns out to be a Markov random process. Let us denote by 

I At), 5$(t), q(t) I/x,, To, qo, to the Markov random vector function, 
generated by the initial conditions Xi = x - , 6 = to, 7 = q. when t = to 
and which for t 2 to is a solution of (l.lj’and (1.3), as defined above. 
Unless the opposite is stated, it will be assumed that the functions fi 
and 5 are defined in the entire { I, tJt space (the domain G is defined by 
i -O”< Xi -C-(i=l, . ..) n),-m<[<m,q141) q21). 

Expression (1.2) can now be written out in the more detailed form 

Jc [xo, Eo, rlol = i M (0 [x (9, E (4, t VII / 50, Eo, ro, to = 01 dt (2.3) 
0 

and in accordance with our assumptions it will be a function of the 
initial conditions x0, co, qo, to = 0 (when the function 6 in (1.3) is 
fixed). ‘Ihe quantity on the left-hand side of (2.3) will also be looked 
upon as a functional Jg of 5, since the function < defines the solutions 
ix(t), 5(t), q(t)1 and hence the value of the integral in (2.3) also. 

‘Ihe problem consists of the determination of the function [4x, 5, ~1, 
which obeys the follohing conditions. 

Chdit ion 2. I. The unperturbed motion x = 0, 5 = 0 when 5 = 5” in 
Equation (1.3) should be asymptotically stable* (definition 1.2, [‘7 1, 

l For the sake of completeness let us re-state these definitions. 

Definition 2.1. The solution x= 0, [= 0 of (1.1) and (1.3) (WI- 
perturbed motion) will be defined as stable in probability if, for 
any two numbers, c > 0. q > 0, which are as small as desired, one can 
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p. 810) with respect to any initial perturbations Xio, co. 

Condition 2.2. ‘Ihe integral (2.3) should be finite for any initial 

conditions and for every initial condition xi,,, to, q0 

JV [XO, Eo, rl01 = mh J; [x0, Eo, qol 
” 

(2.4) 

for functions [ from a defined class i<f of these functions. Below, this 

class will be defined as the set of continuous functions 6, LE 0, 0, T)I= 0. 

The problem under consideration is one of the statistical optimum- 

control problems (see E 3, 8, 9 I). It is a generalized form of the prob- 

lem investigated in [5 1. 

find a number 6 > 0 which is such that for any solution of (1.1) and 
(1.3) which at t = 

to2 

t,, 
<a2 for t> tu, 

satisfies the inequality ~1~’ + . . . + xnO* + 
fill satisfy the condition 

Here, P[ E, t/6, t,] is the probability that for t > t,, either 

q‘L (5) f, 

which satisfies if 
[(P)( t) on leaving 

Definition 2.2. 

x1’(t) $. . .-y+‘:(l) + E”(l)<&” 

. .+ x:,” (It) + 5” (T) < E2 for t,<x<t 

one assumes a cut-off in the realization x (p)(t), 
the r-neighborhood of the point x = 0, 6 = 0. 

The perturbed motion x = 0. 4‘ = 0 will be defined 
as asymptotically stable in probability if it is stable in the sense 
of the definition (2.1) and, moreover, the following condition is 
satisfied for any 6 > 0 Q > 0 : 

p [2p (t) - . . , + zn2(t) f p(t) <EP for 1 :-: to f II’ [Ho, 8, ul / 

/ Go2 + . + %02 -I- go2< HOI> 1 - (/ 

Here, HO is a constant which limits the initial conditions. 

In the present paper we shall confine ourselves to the case where 
the domain of allowed deviations xio’ to covers the entire ( X, (1 
space (the constant Ho can be any positive number). 
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3. Method of solution. We shall describe the method of solution 
based on the Liapunov-function method. 'lhe application of this method to 

statistical stability problems is described in [7 1. 

In the present section the problem (2.4) is considered in the light 

of ideas reported in [9 1 and [lo 1 in connection with optimum speed of 
response. As in those papers, we shall use ideas from the theory of 
dynamic progranming [2,3,5 1. We shall assume that the final functions 

VO(Xl' ***> X”, 5, 111, satisfy the following conditions. 

Condition 3.1. YIhe function #(x, (, 7) is a positive-definite func- 

tion (11, p. 801 and 17, p. 8111) f or all values x, 5 and the possible 

values of 77. The function 21O(x, 5, q) can have an infinitely large low 

limit 111, p. 36 I, i.e. 

u”(G E, rl))/W(? El>0 for (5, E)#O, 
W(x, E)+m for (5, E}-+m 

Condition 3.2. The derivative (rM( or'! /dt)co [ 9,10 1 is, in view of 
(1.1) and (l/3), a negative-definite function at ('= (" and is equal to 

- 01 x, [, 51, i.e.* 

(!!p) = -a [Xl, . . f , Gl, E, 5”l (3-l) 

Condition 3.3. The quantity db!{ 9 f / d t + o[ x, (, 5” 1 reaches a 
minimum when 6 = co, i.e. 

for 6 belonging to the allowed class of functions {(I. 

l In the terminology of stochastic Processes dM( v’l/dt is determined 

bs an infinitely small differential operator for the process [12 1. 
This quantity is obtained as follows: the point x(t) = X, e(t) = 5, 
q(t) = 7 generates for r > t the set of random realizations ( x(r), 

c(r), q(r)I/x, [, 7.1, t; the symbol& w" i/dt is defined in the usual 

way as the limit of the ratio AM{ v" j/At when At+ 0, where 

AM@“) = M 12-O (z (t + At), E (t + At)> q (t + At)) /x (t), E (t), q(t), t) - 

-a0 (x(t)* E (t)P q (t)) 
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Coradition 3.4. The function zP(x, i$, q) can have an infinitely small 
upper limit El, p. 81 f and when 01 x, [, ~fl -) 0. 

The function u" which satisfies conditions 3.1 to 3.4 will be called 
an optimum Liapunov function for the problem defined by (2.4). The func- 
tion 50, which satisfies 3.2 and 3.3, determines the optimum control 
law*, i.e. when [ = 5" in (1.3) the solutions Ix(t),&t), q(t)1 satisfy 
conditions 2.1 and 2.2. In fact, the asymptotic stability of the solu- 
tion x = 0, t = 0 fox the probability (2.1) subject to 3.1, 3.2 and 3.4 
follows from the theorems given in [7 I (pp. 812-820). These theorems 
were established in [7 1 for the random function q(t) of a more special 

type, although the discussion applies for variable q(t) of the more 
general form described above. 'Ihe appropriate proof is analogous to that 
quoted in [7 1 and will not be repeated here. We shall merely note that 
it follows from this proof that in addition to the asymptotic stability, 
as defined by definition 1.2 [7 1, there is also the probabilistic stabil- 
ity of the solution x = 0, 6 = 0 in the following sense: for any numbers 
E > 0, q > 0 one can find 6 > 0 such that the following inequality is 
obeyed: 

P [s,2(t) -j- . * * + %zs(t) + E"(t) <s2 for t >/to/ 

/xzo2 +... + &lo2 -I- 60" < 621 > 1 - q. 

We shall now sketch the proof that the requirement 3.2 follows from 
conditions 3.3 and 3.4. 

To begin with, we have the following equation from (3.1) after averag- 

ing (x(t), t(t), ~(t)llX,, t,,, ‘lo, t0 = 0 over random quantities 

It follows from (3.3) that MI u”(dt), C(t), q(t))] decreases with t. 
Integrating (3.3) with respect to t between to = 0 and t = T, we have 

* It is assumed that the functions v” and 5” are sufficientXy smooth so 
that one can speak Qf the existence of solutions of (1.1) and (1.3) 
and use the derivative dM( v” f /dt and the transformations (3.3) to 
(3.9). 
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We conclude from (3.4) that the integral on the right-hand side of 
this equation converges 
that lim M( 01 = 0 when 
monotonic function MI v” 
T -a Do*. 

It therefore follows 

for T + - . Since o is not negative, this means 
t + 8, i.e. according to condition 3.4 the 

(x(t), E(t), q(t))1 will vanish in the limit as 

from (3.4) that 

i.e. J50 [zO, to, qO] remains finite and Jco = v”. Let us now assume that 
there exists a function <*Lx, 6, 7 1 f 6°F. x, [, q 1 which is such that when 

solutions (x(t), t(t), q(t)lC* of (1.1) and (1.3) 6 = [* in (1.3) the 
yield the following 

q0 (when t, = 0): 

inequality for a certain initial condition x0, to, 

J,* [zo, Eo, rlol <J,o [zo, Eo, rlol (3.6) 

It follows from (3.2) that 

(3.7) 

Averaging (3.7) over the random quantities, we have 

{r (9, E (Q, rl (t)>r*lxo, Eo, To, to = 0 

and integrating with respect to t as before we are led to the inequality 

M iv” (r (7% E (9 rl (T))),* - r” (x0, EOl rlo) > 

It follows from (3.6) that when T + ~0, the integral on 
side of (3.8) converges, i.e. 

r” (50, Eo, rlo) < YM {w [z(t), E (0, 5* (t)l)r*dt - J&o, 
0 

(3-S) 

the right-hand 

Eo, l?ol (3.9) 

* We confine our attention to the case where from M( o f + 0 one can 
conclude that Ml u” 1 + 0. 
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In fact, it follows from the convergence of the integral an the right- 
hand side of (3.8) that lim M{o”] c* = 0 when t + O, i.e. according to 
3.4 (see footnote on p.633) lim Mf v”f * = 0 (t + CO). The inequality (3.9) 
contradicts (3.5) and our assumption i 3.6). This contradiction confirms 
the optimum property of lo. 

The problem is therefore reduced to the determination of the functions 

VOLT, 5‘, 7) and <OCr, 5, q 1. 

4. Equations for the optimum functions u", 4”. The equations 
for u” and 5” can be verified from the conditions (3.1) and (3.2). It is, 
however, necessary to know the expression for dMt v’i/dt in terms of the 
right-hand sides of Equations (1.1) and (1.3) and the statistical charac- 
teristics q(a) and q(a, #I) given by (2.1) and (2.2). Let us now derive 
this expression. For the sake of simplicity, we shall assume that v(t) 
is such that qI G 7 G q2, q1 > - w, q2 < 8. 

In order to compute the derivative &fi Vo I/& from the limit 

d&f (v”> 
-zz 

dt 
lim AM iv’=> 

At for At40 

one can, in calculating AMg u”l , neglect the terms of the order of 
o(At); then one can proceed as follows. Suppose that the following 
values were realized at the time t, x(t) = r, t(t) = 5, q(t) = ‘I, v*(t)= 

v”(x(t), 5(t), v(t)). 7l-l en, during the time interval At which is such 
that (t Q r =G t + At), the following mutually exclusive events can occur 

113 I. 

Event A. ‘Ibe quantity q(r ), t g r G t + At remains constant, i.e. 
q(t) = q(r) = qtt + At) = const = q. According to (2.1), the correspond- 
ing probability is 

P(A),_ 1 - Q (rl) At 

Event B. ‘Ike quantity q(t ) when t < IT G t + At changes in value once. 
According to (2.21, the corresponding probability is 

Event B can in turn be split into mutually exclusive events Bk f13, 
p. 4241, in which the quantity q(r) changes its value only once and so 
that q(t + At) = &$, where &(k = 1, . . . . m) is a set of values of q(r) 
which are different from q. According to (2.2) the corresponding probabil- 
ity is 

p (Bk) = 4 ($ bk) At 
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In the case of event A, Equations (1.1) and (1.3) will behave over 
the interval At as ordinary differential equations and the increment of 

the function u”, i.e. AAv O will in this case be calculable 
ante with the usual rules [ 1, pp. 80-90 1 

in accord- 

(4.2) 

In the case of a B, event, it is clear that* 

ABkU” = V”(z, E, p) - V”(& Et rl) t 0 (AtI (4.3) 

Bearing in mind (4.2) and (4.31, we obtain the following formula for 

the mathematical expectation AM{ v”) (to within terms of the order of 
O( At)): 

AM {v”} = P (A) AAvo + ; P (Bk) AgkvO 
k=l 

+ 5 q (% Pk) lv” cJ;, !.P Pk) - v’(~, to dl 
1 

(4.4) 
k=l 

since in accordance with (2.1) and (2.2) 

g 4 (‘% Pk) = q (77) 
k=i 

we have 

l The symbol O(A t) denotes an infinitely small quantity whose order of 
magnitude is not less than At, i.e. at any rate 0( A t) + 0 when 
At -, o. 
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Dividing (4.5) by At and passing on to the limit as given by (4.11, 
we have 

k=l 

We can now write down the equations for v0 and c;“. 
of (3.1) and (4.6) the first equation is of the form 

As a consequence 

E, rll + 

Ihe second equation can be obtained from (4.7) by differentiation 
with respect to 5, since, in accordance with the above (p. 631 ), when 

5 = co, the left-h an si e of (4.7) is a minimum, ‘Ihe second equation is d d 

If, in addition, 4” is subject to a supplementary condition, e.g. 
16” 1 < 1, then the minimum of the left-hand side of (4.7) must be sought 
subject to this condition. 

‘Ihus the problem is reduced to the solution of (4.7) and (4.8). The 
latter are partial differential equations and their general solution is 
very difficult. However, an approximate method of solution of these 

equations is possible. 

5. ~~roximate method of solution of the equations for VD 
and co. We shall describe a method for solving the optimum problem de- 
fined above which involves the introduction of a parameter 6 . This 
method was outlined for the deterministic case in [lo I. Let us consider 
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instead of the system (l.l), (1.31, the auxiliary set of equations 

dxi 
- = ‘pi Lx, 5, q; 61 dt 

(i = 1, I . , , n), -g = 5 ix, E, rl; 61 (5.1) 

and let us solve the problem of determination of the stabilizing 

6”, which minimizes the functional 
function 

(5.2) 

for this system of equations. 

‘Ihe functions pi, $ and the statistical characteristics q(a; 6 ), 
q(a, /3; 6 ) of the random variable q(t, 6 ) should be chosen so that the 
problem should be easily solvable for 6 =: 0, and with 6 varying between 
0 and 1 the system (5.1) should continuously transform into the initial 

system (l.l), (1.3) (for 6. = 1). 

Using the equations describing the change in the optimum functions 

vO(x, 4, q; 6 ), 5”E x, 5, q; $k 1 for the problem (5.1), (5.2) which 
occurs when 6 is changed, one can find the optima solution for the 
original pxoblem. In order to obtain these equations, it is sufficient 
to formulate Equations (4.7) and (4.8) for the problem (5.11, (5.2) and 
differentiate these equations with respect to 6. Although the resulting 
equations are also rather complex, one can use the intial solutions v” 
and co at 6 = 0 to evolve a procedure for an approximate numerical solu- 
tion. This approach is also convenient because by continuously varying 
the problem through varying 6, we shall be concerned with the branch of 
the solution v’(x, e, ‘1; 6 1, [“[ n, 5, 7; 6 1 which, starting with a 
stable initial solution u”(x, 4, 9; 0), 4”[ x, c, ‘I; 0 1 at 6 = 0, will 
give for 6 > 0 a stable optimum system. (‘I&e function v’(x, 6, 9; 6 ) 
for 6 > 0 will be found to be positive-definite.) ‘Ihe continuous de- 
formation of the system is aIso convenient in investigating the existence 
of a solution for the optimum problem*. 

6. The choice of parameters of a linear system which will 
minimize the quadratic quality criterion, Ihe aim of the present 
section is to give an illustration of the approach sumnarized in 

l This is illusSrsted below in the case of an example involving the 
minimization of the quadratic functional in the linear system (see 
Sections 6 and 7). 
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Section 4. Let us consider a system* which can be described by the linear 
equations (1.1) 

dz. 
* = i aij (r) xj + mit (i=1,2) 

i=l 

(6.1) 

and we shall seek the controlling action in the form 

E = 5 1x1, x21 E, 7 (Ql (6.2) 

using the minimizing condition for the quadratic functional (2.3) 

J, [x10, z20, Eo, rlol = 

= pw[s2(~) + x22(t) + E2@) -k k2 Wl/~IO, x2o, Eo, qo, Lo = 0) dt = min. 
0 

We shall confine our attention to the case where the variable q(t) 
assumes only two values, namely, 7 = qI and 11 = q2, with transition 
probabilities given by 

P [ qi -+ rb during the time At] = pij At + o (At) (iii) (6.3) 

‘Ihe functions q(a) and q(a, /3) (p. 628 ) will be of the form 

4 (%I = P12, v (7I2) = P21 

Q (% P> = q (rJ = PIZ for P = 712 

4 CT27 P) = Q h2) = P21 for P = rll 

‘Ihe choice of the parameters for a linear system ensuring good quality 
has been discussed by Cbetaev [ 2 1 . 

‘Ihe minimization of the quadratic quality criterion was formulated 
and investigated by Krasovskii and Fel’dbaum (see 114 1 and the biblio- 
graphy therein). 

‘Ihe Liapunov-function method has been applied to the optimisation of 
control systems by Bertram and Kalman [15 1. 

* The analysis given in the present section for the set of two equa- 

tions (6.1) can be extended to an nth-order system; however the 
calculations become very involved. 
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Let us write down bations (4.7), (4.8) for the problem defined by 
(6.3) in the form 

+ Plk [v’(% 521 E, qk) -v’(% x2, t, %)I + 

+ xl2 + ~2~ + E2 + (5” [xl, 52, %, qW= 0 (1 = 1, 2; k# 1) (6.4) 

(6.5) 

Solving EQuation (6.5) for 5" and substituting into (6.4), we obtain 
the following partial differential equations for the optimum Liapunov 
function: 

i “v”(;;*L rll) [ 
i’@j (111) Xj + %E] + PZk b” cx, E, r)k) - v’(x, E, q2)] - 

i=l j=l 

1 aTo (2, E, ql) -- 
4 aE z I 

2 - xl1 - x2* - s5" (1 = 1,2; k#l) (6.6) 

'Ibe solution of these equations should be sought in the following 

quadratic form (see [ 5, &apt. IV I): 

.?I0 (Xl, X2, Et ql) = i [hj (qZ) XiXj + bi (11) xiEl + c (TZ) E” (Z=1, 2) (6.7) 

i, j=l 

Substituting the right-hand side of (6.7) into (6.6) and equating the 
coefficients of equal powers of Xi and 6, we obtain a system of quadratic 
equations for the coefficients bij, bi, c. 

Having found the solution of this system of equations, for which the 
forms given by (6.7) are positive-definite, in accordance with the re- 
sults of Section 4, the optimum function can be determined from Equation 

(6.5) in the required form 

5” = - $ [bl (v) Xl + b2 (qz) x2 -i- 2c (rll) El (1 = 1, 2) (6.8) 

7. 'lhe existence of the optimum control law for the prob- 
lem (6.3). We shall now discuss the existence of the solution v" for 
the partial differential equation (6.6). 'Ibe system of Equations (6.1) 
cannot always be stabilized by choosing the control law (6.2) with given 
sij and "i. Moreover, the solutions of Equations (6.6) which are positive- 
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definite functions ~‘(x, 5, 7) do not always exist either. We shall de- 
fine a control law C$ = c(q) as admissible if with such a law the system 
(6.1) is asymptotically stable in probability and the integral (6.3) is 
finite for any initial condition. The existence of the admissible (and 
optimum) control in the deterministic case has been investigated by F.M. 
Kirillova. In the present paper we shall not consider the existence of 
the admissible solution for the stochast,ic system (6.1), since this will 
be discussed in a separate paper. 
control law 5: = 6’4) 

We shall merely note that for a given 
in order that the system should be asymptotically 

stable in probabilit; and in order that the integral (6.3) should remain 
finite, it is sufficient to have a positive-definite function v, having 
a positive-definite derivative dM( v 1 /dt, where v and dh4I v I /dt satisfy 
estimates [7, pp. 815-823 1 h c aracteristic for quadratic forms. 

‘Ihe main aim of the present section is to show that an optimum control 
exists if an admissible control exists. 

Let us set up the auxiliary set of equations* 

Uij (11) Xj + mi E 
I 

- (1 - S) Xi (i=l, 2; O,<S,<l, (7.1) 

g = 5 1x1, 52, Et 7; 61 (7.2) 

where (7.2) is so chosen that for each 6~[ 0, 1 I the system is asymp- 
totically stable (in probability) and 

J, 1x10, 220, Eo, 70, 61 (7.3) 

- FJ4 {[Xl2 (4 + 522 (4 + E’ (t) + E” (41 /Go, 220, &,, 70, to = 0) dt = mio 

0 

When 6 = 0, the problem can be solved at once since the basic equa- 
tions are 

* In the present case, the existence of the optimum solution can be 
established more simply and by direct means; however we shall give 
the general analysis which will apply to all cases and which 
illustrates the approach to the problem described above in Section 5. 
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and can be satisfied by choosing 

v” = blls,’ + bz2xQ2 + cE” (75) 

where the coefficients bii and c can be determined from the equations 
2bii = 1, c2 = 1 which were obtained by substituting (7.5) into (7.4). 
These equations have the positive solutions 

blr = + , b,, = +, c=l (7.6) 

If fox some 6 > 0 the problem of the existence of an optimum Liapnnov 
function V* can be solved, then the solution (a positive-definite function 
v”) satisfies the equations (6.61, i.e. 

Let us consider the change in the solution v* of these equations with 
varying 6. Differentiating these equations with respect to 6 and de- 
noting duo/~6 by a[ x, 5, 7; 6 1 , we have 

+ Pfk [a (z, E, qk; 9) -a (2, E, 111; f+)l = Fl (a, E; 6) (2 = 1, 2; k# I) 

where Fi is a quadratic form in xi x2, 6.. If the problem has a solution 
for 6 * a 0, then in view of the results given in [ 7 I (pp. 815-8201, 
the set of equations (7.1) will be asymptotically stable in the mean 
square. However, in that case (7.7) will have a solution for 6 = 6 * and 
this solution will have the quadratic form 4(x1, x2, c, q; fi 1. In fact, 
these equations can be written down in 

where the symbol (dMia!/~&(,_,)(,_~) 

the foxm 

Fl(X, E; 6) (7.8) 

denotes the derivative of a 
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subject to the optimum system (7.1), (7.2) at 6 =6*. 

It also follows from [ 7 1 that under our conditions the solution a of 
(7.8) will exist. By equating coefficients of equal powers of xi and e 
in (7.7), we obtain a set of differential equations for the functions 

bii(@, ?J)t bi(6, q), c( @, q> (p. 639 ). It follows from the above dis- 
cussion that the resulting set of equations cm be solved for dbijld6, 
dbi/d 6, de/d 6 which are the coefficients of the function a. Finally, 
in order to establish the existence of the solution of the optimum prob- 
lem (6.3), i.e. the problem (7.4) for ti = 1, it is sufficient to verify 
that these differential equations for bii, bi, c can be integrated with 
respect to @ over the interval c 0, 1 1 subject to the initial conditions 
(7.6). However, one can see that this integration would be impossible 
only if (7.7) could not be solved on approaching 6 =6* or if bij -) 00, 
bi + 00, c + m for 6 + 6 - 0. However, these difficulties are only 
possible for those values of 6 * for which the system (7.1), (7.2) either 
loses its asymptotic stability on the average or v” (x, 5, q; 6) increases 
without limit at finite points x, 6 fox 6 + 6 - 0. In the first case, the 
function V’ will no longer be positive-definite for 6 +$* - 0. However, 
these changes of t1’ are excluded, since for 6 <I%* the function v” is 
equal to the optimum value of the functional J which, at the points x, 
5 lying on a circle of unit radius, is unifor f y bounded over 6 E [ 0, 1 1 
both from below (due to the boundedness of the coefficients of the system 
in (7.1), (7.2)) and from above (since, in our view, for the system (6.1), 
(6.2) and consequently also for the system (7.1), (7.2)) a permissible 
control c(g) exists for which the value of the functional 15 is not less 
than Igo, i.e. v” Q I this permissible control is obtained for the 
system (7.1), (7.2) i!($L’assume c(q) = 6 r - (1 - 6)J, where [ is the 
permissible control for the initial problem. 

It follows from the above discussion that it is possible to extend 
the solution of (7.6) right up to 6 = 1, i.e. it follows that the 
optimum solution of the problem (6.3) does, in fact, exist. 

In conclusion, we note that the numerical integration of the differ- 
ential equations for b . II bi, c on YE f 0, 1 1 can be used to determine 
the approximate value o Y the optimum Liapunov function v”. 
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