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The selection of the control process for a system in which the controlled
object is subject to random changes is discussed. The controlling sction
f is formed, subject to the condition that the integral quality estimate
is a minimum, This estimate is a given function of the off-balanqg of
coordinates x;, the controlling action £ and the rate of change £ of ¢
during the transient process. The problem is investigated using the
Liapunov-function methods [ 1,2 ], modified in accordance with the princi-
ples of dynamic programming [ 3,4 ]. The present results generalize those
reported in [5 ] to the case of stochastic systems.

1. Preliminary remarks. Consider a control system in whiclk the
transient process is described by the stochastic differential equations
of perturbed motion

dx.
%‘“’fﬂ["’h---,ﬁm&,ﬂ(t)] (i=1,...,n) (1.1)

Here, x; are the deviations of the true values of the coordinates of
the controlled vector quantity from the prescribed (unperturbed) values
x;=0(i=1, ..., n), and £ is the control action produced by the con-
troller. The particular feature of the system is that it is subject to
random changes during the control process. This is taken into account in
Equation (1) by introducing the random variable 7(t).

We shall assume that f; are known continuous functions of their argu-
ments which satisfy the Lipschitz conditions in the domain G of the
tx, & 11l space, f,10, ..., 0, 7(¢)1= 0, and the variable 5(t)
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represents the Markov random process [6, p. 79 1. Under these conditions
and provided the control action ¢ is known, Equations (1.1) describe the
random transient process x(t).

The control action & of the controller will be determined from the
condition

oo

J=\ M@, .., 5@, £@ LO)d=min (1.2)

0

where the symbol M denotes the mathematical expectation of the random
quantity o which is a given non-negative function of its arguments. Since
(1.2) includes &, we shall seek the equation for the optimum controller
in the form*

ézg[xly sy Ty g’ 71] (13)

The aim of the present paper is to investigate the form of the func-
tion { which would ensure the stability of the unperturbed motion z; = 0
(i=1, ..., n) and would satisfy the condition (1.2).

2. Formulation of the problem. Let P[ Q/L 1 be the probability
of an event Q subject to the condition L, M{ w/L} be the mathematical
expectation of the random quantity  subject to the condition L and let
o(At) be an infinitely small quantity of a higher order than At (the
small quantity At is assumed to be positive throughout).

Let us now describe the statistical properties of the random function
n(t). Let us confine our attention to the case where there are two func-
tions, namely gq(a) and g{a, B), which describe the time changes of 7(t)
and are defined by [ 6, pp. 231-2451

Pint+A)=oa/n{t)=a]=1-—q(a)At 4 0(At) (2.1)
P+ M) =8, n(t--At)=a/n(@) =a]l = q(a, B) AL +0(AD)  (2.2)
(o, =1,..., m+1)

* If the quantity é does not enter into the right-hand side of (1.2),
then the equation for £ can be sought in the form of the ideal con-~
troller £ = 1 Eis enes Z,, 0 1. Among the arguments of the function
{ in (1.3) there is the function n. This means that it is assumed
that 7(¢) can be measured and the corresponding signal can be fed
into the controller.
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i.e. the probability that n(t) will remain constant (n(t) = a) over the
small interval At is approximately equal to 1 — g(a)At and the probabil-
ity of the single change n(t) = a » (¢t + At) = B in this interval is
approximately equal to g{a, B)At.

In accordance with [ 6, p. 242 1, we shall assume that the realizations
of the random process n(t) are the step functions 7(P)(t) (except for a
set of zero probability realizations which will be neglected).

If the function ¢ in (1.3) has been chosen (and is continuous and
satisfies, for example, the Lipschitz conditions with respect to x,, &,
7), then for each realization 7{P)(t) and for each initial condition
tx;, &, t = ty} Equations (1.1) and (1.3) define the continuous

realization x(P)(xo, £or tos T, 7¢P)), f(p)(xo, £gr tor T, 7(P) of the
random solution x(t), g(t) describing the transient process in the
system. If this random process is considered in the {x,, ..., x,, & 7}
space, then it turns out to be a Markov random process. Let us denote by
tx(t), &(t), n(t)}/ %y, &, 1y, t, the Markov random vector function,
generated by the initial conditions x; = x,,, &= &), 7 =1, when t = ¢,
and which for t >t is a solution of (1.1) and (1.3), as defined above.
Unless the opposite is stated, it will be assumed that the functions f;
and { are defined in the entire { x, £} space (the domain G is defined by
{ —o< xi<oo(i=1, ey n),—m<f<°°,1)1<7) <172}).

Expression (1.2) can now be written out in the more detailed form
Jt [0, EO: 7]0] = S M {o[x (t)7 g(t)v é(t)]/xo; §o, Nos Lo = O} dt (2'3)
0

and in accordance with our assumptions it will be a function of the
initial conditions x,, £, 7y, ty = O (when the function { in (1.3) is
fixed). The quantity on the left-hand side of (2.3) will also be looked
upon as a functional J, of {, since the function { defines the solutions
{x(t), £(t), n(t)} and hence the value of the integral in (2.3) also.

The problem consists of the determination of the function (A zx, &, 7],
which obeys the following conditions.

Condition 2.1. The unperturbed motion x = 0, £ = 0 when ¢ = £° in
Equation (1.3) should be asymptotically stable* (definition 1.2, [71,

* For the sake of completeness let us re-state these definitions.
Definition 2.1. The solution x = 0, § = 0 of (1.1) and (1.3) (uvn-

perturbed motion) will be defined as stable in probability if, for

any two numbers, € > 0, g > 0, which are as small as desired, one can
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p. 810) with respect to any initial perturbations x;,, &,.

Condition 2.2. The integral (2.3) should be finite for any initial
conditions and for every initial condition x;,, &,, 7,

JC° [.130, gO) nO] = mvin J‘; lx01 EOa 7]0] (2‘4)

for functions { from a defined class {{} of these functions. Below, this
class will be defined as the set of continuous functions ¢, {[ 0, 0, 7l=0.

The problem under consideration is one of the statistical optimum-
control problems (see [3, 8, 91). It is a generalized form of the prob-
lem investigated in [5].

find a number & > 0 which is such that for any solution of (1.1) and
(1.3) which at t = t, satisfies the inequality z) o2 + ... + z0° +
cfoz < 8% for t> t,, will satisfy the condition

Ple, 16, t,]>1—4q
Here, Pl e, t/5, to] is the probability that for t > t, either

02 (1) e g () + B () <L 82
or

€ (T) 4. oAt (T) + B (n) <&t for {, St

which satisfies if one assumes a cut-off in the realization x(p)(t),
EP) () on leaving the € -neighborhood of the point z = 0, & = 0.

Definition 2.2. The perturbed motion x = 0, & = 0 will be defined
as asymptotically stable in probability if it is stable in the sense
of the definition (2.1) and, moreover, the following condition is
satisfied for any e > 0 ¢> 0:

Pz (t) = ... a2 () +EB(t) et for 1 > ¢ + T [Hy, &, q]/
i+ . Fwp F B Hol > 1 —¢
Here, H, is a constant which limits the initial conditions,

In the present paper we shall confine ourselves to the case where
the domain of allowed deviations z;,, {-’0 covers the entire { x, £}
space (the constant Ho can be any positive number).
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3. Method of solution. We shall describe the method of solution
based on the Liapunov-function method. The application of this method to
statistical stability problems is described in [7 ].

In the present section the problem (2.4) is considered in the light
of ideas reported in[9] and [10 ] in connection with optimum speed of
response. As in those papers, we shall use ideas from the theory of
dynamic programming [ 2,3,5]. We shall assume that the final functions
v(xy, ..., %, &, 1), satisfy the following conditions.

Condition 3.1. The function v°(x, £, 1) is a positive-definite func-
tion ([1, p.80] and [7, p. 811]1) for all values %, ¢ and the possible
values of 1. The function v°(x, £, 7) can have an infinitely large low
limit [11, p. 361, i.e.

v° (:E, E, ﬂ))w(x, E)>O for {xi §}=/=01

w(z, E)—oc0 for {z, &} —>o0

Condition 3.2. The derivative (di} ru°}/dt)§o [9,10 1 is, in view of
(1.1) and (1.3), a negative-definite function at { = {° and is equal to

-l x £ £],i.e.*

dM {v°}>

)= — 0@, ..., 2 § T (3.1

Condition 3.3. The quantity dM{+°}/dt + ol x, &, (°1 reaches a

minimum when { = £°, i.e.

) o8 = i [(2EE2) ot 6 1] 02

for { belonging to the allowed class of functions {¢}.

* In the terminology of stochastic processes dM{ +°}/dt is determined

by an infinitely small differential operator for the process [ 12 ].
This quantity is obtained as follows: the point x(t) = x, £(t) = &,
n(t) =1 generates for r > ¢t the set of random realizations § x(r),
£y, n(r)}/x, £, 7, ¢ the symbol dM{ +° } /dt is defined in the usual
way as the limit of the ratio AM{ «*}/At when At~ 0, where

AM 0% = M {° (= (t + A1), B¢+ AD), n(t+AD) /2 (D), E(), (1), ty—
— v (z(t), (1), m(2))
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Condition 3.4. The function v°(x, £, #) can have an infinitely small
upper limit [1, p. 811 and when wl x, £, n1- 0.

The function v°® which satisfies conditions 3.1 to 3.4 will be called
an optimum Liapunov function for the problem defined by (2.4). The func-
tion {°, which satisfies 3.2 and 3.3, determines the optimum control
law*, i.e. when ¢ = {° in (1.3) the solutions { x(t),&(¢), n(t)} satisfy
conditions 2.1 and 2.2. In fact, the asymptotic stability of the solu-
tion x = 0, £ = 0 for the probability (2.1) subject to 3.1, 3.2 and 3.4
follows from the theorems given in [7 ] (pp. 812-820). These theorems
were established in [7 ] for the random function n(t) of a more special
type, although the discussion applies for variable 7{t) of the more
general form described above. The appropriate proof is analogous to that
quoted in [7 ] and will not be repeated here. We shall merely note that
it follows from this proof that in addition to the asymptotic stability,
as defined by definition 1.2 [7 1, there is also the probabilistic stabil-
ity of the solution x = 0, £ = 0 in the following sense: for any numbers
e >0, g> 0 one can find 8 > 0 such that the following inequality is
obeved:

Pl (@) + ...+ o> () + 8 () <&® for 12>,/

[ Foo @2 A B L) > 1 —q.

We shall now sketch the proof that the requirement 3.2 follows from
conditions 3.3 and 3.4.

To begin with, we have the following equation from (3.1) after averag-
ing { x(t), &(t), n(t)} /%y, &;, 1y, ty = O over random quantities

(dM IO UM OV )v M {(i%zi){} = — M{o[z () E®), I°@©)1(3.3)

It follows from (3.3) that M{v°(x(t), &(t), n(t))} decreases with t.
Integrating (3.3) with respect to t between t; = 0 and ¢ = T, we have

M (v° (= (T), §(T), n(T)}o—v°(Zo, B0 o)
T

= -*S M{o@), £@), E=)dt (3.9

0

* It is assumed that the functions +° and £° are sufficiently smooth so
that one can speak of the existence of solutions of (1.1) and (1.3)
and use the derivative dM{ v°} /dt and the transformations (3.3) to
(3.9).
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We conclude from (3.4) that the integral on the right-hand side of
this equation converges for T » . Since @ is not negative, this means
that lim M{w} = O when ¢t - =, i.e. according to condition 3.4 the
monotonic function M{+° (x(t), &(¢), n(t))} will vanish in the limit as
T -»> 09*.

It therefore follows from (3.4) that

[o0]

v° (g0, Bor o) = { Moz (2), E(2), E(O)])eat (3.5)

0

i.e. J§° [xo, :fo, 170] remains finite and JC° = v° Let us now assume that
there exists a function £*[x, &, n]# {°[x, £, ] which is such that when
{ = {*in (1.3) the solutions { x(t), &£(t), n(t)} ,+ of (1.1) and (1.3)
yield the following inequality for a certain initial condition x,, &,

Ny (when t, = 0):

Jf." [xO) §01 "]o]<~]c° [x()’ EOy 7]0] (3'6)
It follows from (3.2) that
(F)) > —oln & =17 (3.7)

Averaging (3.7) over the random quantities, we have
{flf (t)r g(t)7 "l(t)}-t;‘/xo, go, TIO: tO = O

and integrating with respect to t as before we are led to the inequality

M {0° (@ (T), E(T), n(T)ee —v° (@0s Eor M) >

T
>—{Molz®), 1), &* Ot 3.8)

0

It follows from (3.6) that when T » =, the integral on the right-hand
side of (3.8) converges, i.e.

[o o}

v° (o, &0 Mo) << S M{o[z(t), E(t), L¥ (O13gs dt = Jys[xo, Eor Mol (38.9)

0

-

We confine our attention to the case where from M{ w} -» 0 one can
conclude that M{ »°} - o.
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In fact, it follows from the convergence of the integral on the right-
hand side of (3.8) that lim M{@°},« = 0 when t » o, i.e. according to
3.4 (see footnote on p.633) lim Mv% ,+ = 0 (¢t » «). The inequality (3.9)
contradicts (3.5) and our assumption %3.6). This contradiction confirms
the optimum property of {°.

The problem is therefore reduced to the determination of the functions

v(x, £, n) and {°lx, £, 7 1.

4. Equations for the optimum functions v°, {°. The equations
for v° and {° can be verified from the conditions (3.1) and (3.2). It is,
however, necessary to know the expression for dM{v°}/dt in terms of the
right-hand sides of Equations (1.1) and (1.3) and the statistical charac-
teristics g(a) and g(a, B) given by (2.1) and (2.2). Let us now derive
this expression. For the sake of simplicity, we shall assume that 5(t)
is such that 7, <7 <7y, 7, > — %, 7, <,

In order to compute the derivative dMi° }/dt from the limit

dM 2% — lim AM {v°}

dit At

for At—0 (4.1)

one can, in calculating AM{v°}, neglect the terms of the order of
o(At); then one can proceed as follows. Suppose that the following
values were realized at the time t, x(t) = x, &(t) = &, n(t) =75, °(t)=
v°(x(t), £(t), n(t)). Then, during the time interval At which is such
that (¢t < r <t + At), the following mutually exclusive events can occur

[131.

Event A. The quantity 7(r), t < r < t + At remains constant, i.e.
7(t) = 9(r) = n(t + At) = const = 7. According to (2.1), the correspond-
ing probability is

P(Ay=1—q(n) At

Event B. The quantity 5{(r) when £ < r < t + At changes in value once.
According to (2.2), the corresponding probability is

P (B)=q(n) At

Event B can in turn be split into mutually exclusive events B [13,
p. 424 1, in which the quantity n(r) changes its value only once and so
that 9(t + At) = B, where B, (k=1, ..., m) is a set of values of 5(r)
which are different from 7. According to (2.2) the corresponding probabil-
ity is

P (By) =~ q(n, Bx) At
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In the case of event A, Equations (1.1) and (1.3) will behave over
the interval At as ordinary differential equations and the increment of
the function v°, i.e. A v° will in this case be calculable in accord-
ance with the usual rules [1, pp. 80-90 ]

AAU "\-’2 Ov° (x E 7] Axl+ ov° (a;vggi "]) AEQ/"

(@t 9° (z, £, )
~[2 ZEED jn b TG Cn b m A (42

i=1

In the case of a B, event, it is clear that*
Ap® = v° (2, &, B)—o°(x, &, )+ O(AD) 43)

Bearing in mind (4.2) and (4.3), we obtain the following formula for
the mathematical expectation AM{ v°} (to within terms of the order of
O(A)):

AM {v°y =~ P (A) Ayv° - 2 P (By) Ap,o°

k=1
=At[26—”~‘i§—’ﬁmx g, m+ LB g, g,
i=1
+ Sgm, B (e, & B — o (a, §, n)]] (4.4)
k=1

since in accordance with (2.1) and (2.2)

m

D g, Br)=q(m)

k=t

we have

* The symbol O(A t) denotes an infinitely small quantity whose order of
magnitude is not less than At, i,e. at any rate O(At) > 0 when
At » 0.
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Ox; £

AM{vo}zAg[z @GN fr oy g e,

X C {ﬂ’), E’ 7]] -+ 2 q (71’ Bk) v° (.7), E: Bk) —4q (71) v* (33, §7 ﬂ)] (4‘5)
Rt

Dividing (4.5) by At and passing on to the limit as given by (4.1),

we have

aM © i 0v° » B Ox’ ’
dﬁv} =3 v (;: £ s, &, n]+Wg[x,g,n]+

Z;
. k3
i=1

+ 7%, & B g(m Br)—a(mo°(z, &) (4.6)
k=1

We can now write down the equations for v° and {°. As a consequence
of (3.1) and (4.6) the first equation is of the form

38D e, & o G, &

i::]_

-+ Zvo (xs gs Bk)Q(n; Bk) —q (ﬂ) v° (:C, E’ ’*’l) + o {.’E, gv ga} =0 (4'7)

K=l

The second equation can be obtained from (4.7) by differentiation
with respect to {, since, in accordance with the above (p. 631 ), when
¢ = {°, the left-hand side of (4.7) is a minimum. The second equation is

° (=, Ew |, delr, & 1 _
e + 5 =0 (4.8)

If, in addition, £° is subject to a supplementary condition, e.g.
|¢°] <1, then the minimum of the left-hand side of (4.7) must be sought
subject to this condition.

Thus the problem is reduced to the solution of (4.7) and (4.8). The
latter are partial differential equations and their general solution is
very difficult. However, an approximate method of solution of these
equations is possible.

5. Approximate method of selution of the equations for v°
and ¢°. We shall describe a method for solving the optimum problem de-
fined above which involves the introduction of a parameter ¥ . This
method was outlined for the deterministic case in [10 ]. Let us consider
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instead of the system (1.1}, (1.3), the auxiliary set of equations

duw; .
S =quln &m0 (=1, B =tlmE ol G4

and let us solve the problem of determination of the stabilizing function
¢°, which minimizes the functional

J’(, [x{): gO’ nO; ﬁ] = S M {w [3}' (t)» E(t)’ é(t); ’3‘]/370: gOs Mo to = O} dt (5'2)

0

for this system of equationms.

The functions ¢;, ¢ and the statistical characteristics qla; ¥),
gla, B; ©®) of the random variable #(t, & ) should be chosen so that the
problem should be easily solvable for & ='0, and with ¢ varying between
0 and 1 the system (5.1) should continuously transform into the initial
system (1,1), (1.3) (for ¥ = 1).

Using the equations describing the change in the optimum functions
v2(x, & n; ©), £l x, &, 1; 8] for the problem (5.1), (5.2) which
occurs when U is changed, one can find the optimum solution for the
original problem. In order to obtain these equations, it is sufficient
to formulate Equations (4.7) and (4.8) for the problem (5.1), (5.2) and
differentiate these equations with respect to 1. Although the resulting
equations are also rather complex, one can use the intial solutions v°
and {° at ¥ = 0 to evolve a procedure for an approximate numerical solu-
tion. This approach is also convenient because by continuously varying
the problem through varying ¥, we shall be concerned with the branch of
the solution v°(x, &, 7; ¥ ), {°[ x, £, n; O 1 which, starting with a
stable initial solution v%(x, &, 5; 0), {°[ x, & 7; 01 at ¢ = 0, will
give for & > 0 a stable optimum system. (The function v°(x, &, 7; §)
for ¥ > 0 will be found to be positive-definite.) The continuous de-~
formation of the system is also convenient in investigating the existence
of a solution for the optimum problem*.

6. The choice of parameters of a linear system which will
minimize the quadratic quality eriterion. The aim of the present
section is to give an illustration of the approach sumarized in

*

This is illustrated below in the case of an example involving the

minimization of the quadratic functional in the linear system (see
Sections 6 and 7).



638 N.N. Krasovskii and E.A. Lidskii

Section 4. Let us consider a system* which can be described by the linear
equations (1.1)

dx; 2 .

j=1

and we shall seek the controlling action in the form
g = C [xly Zo, E’ 7] (t)] (62)

using the minimizing condition for the quadratic functional (2.3)

J: [Z10) Z20, Eor Mol =
co

= Ml () + 2% (1) + B0 -+ 8]/ 710, 220, &0y Moy Lo = 0} dt = min.

0

We shall confine our attention to the case where the variable n(t)
assumes only two values, namely, n = 7, and 7 = n,, with transition
probabilities given by

P [n;— m; during the time At] = pi; At -+ o (At) (i==1) (6.3)
The functions g{a) and g(a, B) (p.628 ) will be of the form
g (M) = P, q (M) = P

g(M1, B)=¢q(m)=p12 for B=m,
g(Me, B)=¢q(M2) =pay forB=m

The choice of the parameters for a linear system ensuring good quality
has been discussed by Chetaev[2].

The minimization of the quadratic quality criterion was formulated
and investigated by Krasovskii and Fel’dbaum (see [14 ] and the biblio-
graphy therein).

The Liapunov-function method has been applied to the optimisation of
control systems by Bertram and Kalman [15].

* The analysis given in the present section for the set of two equa-
tions (6.1) can be extended to an nth-order system; however the
calculations become very involved.
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Let us write down Equations (4.7), (4.8) for the problem defined by
(6.3) in the form

2 3z, > ai(nn) zj+mi 38 ) £° [z, %3, & M) +
i=1 =1

+ Dk [vo ($1, Lo, Ev nh‘)_vo (xlr Z, g) nl)] ‘Jl_

2 9v° (2, T3, g, ) [ 2 ] 4 0v° (21, %2, &, 0

ol b o+ B (o T & MT=0 (=L 2 kD (6.4)

av° (xl’ T2, El "ll) + 2§° [xl, x2, g’ T]l] — 0 (l = 1., 2) (6.5)
9%

Solving Equation (6.5) for {° and substituting into (6.4), we obtain
the following partial differential equations for the optimum Liapunov
function:

2 90°(z, &, ) [ &’ . .

2——35——[2aumwh+m£]+mﬂvw,§na—W(%E,mn—

i=1 j==1
1 [3v°(1,§,ﬂﬂ
& | er

| =—sh—m—g a-t2en @69

The solution of these equations should be sought in the following
quadratic form (see [ 5, Chapt. IV]):

W (@1, By &) = D by () zazi o) zE] +e(m)E 0=12 (6.7

i, j=1

Substituting the right-hand side of (6.7) into (6.6) and equating the
coefficients of equal powers of x; and £, we obtain a system of quadratic

equations for the coefficients bij' bi, c.

Having found the solution of this system of equations, for which the
forms given by (6.7) are positive-definite, in accordance with the re-
sults of Section 4, the optimum function can be determined from Equation
(6.5) in the required form

L= _%[bl (M) 21 + bz (WD) %2 + 2¢ (M) El (=1,2) (6.8)

7. The existence of the optimum control law for the prob-
lem (6.3). We shall now discuss the existence of the solution v° for
the partial differential equation (6.6). The system of Equations (6.1)
cannot always be stabilized by choosing the control law (6.2) with given
a;; and m;. Moreover, the solutions of Equations (6.6) which are positive-
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definite functions v°(x, §, 7) do not always exist either. We shall de-
fine a control law f £¢9 as admissible if with such a law the system
(6.1) is asymptotically stable in probability and the integral (6.3) is
finite for any initial condition. The existence of the admissible (and
optimum) control in the deterministic case has been investigated by F.M.
Kirillova. In the present paper we shall not consider the existence of
the admissible solution for the stochastic system (6.1), since this will
be discussed in a separate paper. We shall merely note that for a given
control law € = ({9 in order that the system should be asymptotically
stable in probability and in order that the integral (6.3) should remain
finite, it is sufficient to have a positive-definite function v, having
a positive-definite derivative dM{ v} /dt, where v and dM{ v} /dt satisfy
estimates [ 7, pp. 815-823 ] characteristic for quadratic forms.

The main aim of the present section is to show that an optimum control
exists if an admissible control exists.

Let us set up the auxiliary set of equations*

dz;
i = [}_ aij Tl)x,+m1§]—(1~ﬁ)xi (i=1,20<8o<<y (7.1)

=1

E=Clxy, % & M5 O (7.2)

where (7.2) is so chosen that for each §&=[0, 1 ] the system is asymp-
totically stable (in probability) and

J¢ [ %10, T20, oy Moy V1 (7.3)

= S M {[x;® (&) + Xy (t) + &2 () -+ (t)]/xIOa T20, &0, Mo» fo = 0} dt = min

0

When O = 0, the problem can be solved at once since the basic equa-
tions are

* In the present case, the existence of the optimum solution can be
established more simply and by direct means; however we shall give
the general analysis which will apply to all cases and which
illustrates the approach to the problem described above in Section 5.
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- = Cbl g 4 (:fagg W0 [a, &, 0] = — g2 P B (L [, §, M)
=1

dx;
; (7.4)
2° [z, & ml = — 20
and can be satisfied by choosing
ZJO - bllx12 ‘T 622.'1:22 + ng (7.3)

where the coefficients b;; and ¢ can be determined from the equations
2b;; =1, ¢? = 1 which were obtained by substituting (7.5) into (7.4).
These equations have the positive solutions

(.

1
b11 =T, bgzz'—z—, c=1 (7.6)

If for some ¥ > O the problem of the existence of an optimum Liapunov
function v° can be solved, then the solution (a positive-definite function
v°) satisfies the equations (6.6}, i.e.

2 a o 2 1 a o T2
S %[02 aiw;— (1 — O s+ mitd| — - [ 5e| +
i=1 j=1
+ pu[2° (@, &, s ©) — 0° (2, E) s D) = — 1y — 72 — E2 (I=1,2 k=D

Let us consider the change in the solution v® of these equations with
varying ¥ . Differentiating these equations with respect to U and de-
noting dv°/39% by al x, &, 7; 01, we have

2 2 i .
=1

i=1

+ puela(z, &, M3 ﬂ)m“(»’% E, s W)= Fi(x & D) (I=1, 2; ks=1)

where F; is a quadratic form in x, z;, {. If the problem has a solution
for ¢* > 0, then in view of the results given in [7 ] (pp. 815-820),
the set of equations (7.1) will be asymptotically stable in the mean
square. However, in that case (7.7) will have a solution for O = ¥ * and
this solution will have the quadratic form a(x,, x,, £, ; ¥). In fact,
these equations can be written down in the form

(dM {ot}

—t = Fy{x, &, & 7.8
8 )".W) Lz, & 9) (7.8)

where the symbol (dMia}/dt(; ;,(7. 5, denotes the derivative of a
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subject to the optimum system (7.1), (7.2) at & =0*.

It also follows from [7 1 that under our conditions the solution a of
(7.8) will exist. By equating coefficients of equal powers of x; and &
in (7.7), we obtain a set of differential equations for the functions
b; (ﬁ 1), b;(9, n), (9, n) (p.639). It follows from the above dis-
cu531on that the resulting set of equations can be solved for db; /d'ﬁ
db;/d &, dc/d ¥ which are the coefficients of the function a. F1nally,
in order to establish the existence of the solution of the optimum prob-
lem (6.3), i.e. the problem (7.4) for ¥ = 1, it is sufficient to verify
that these differential equations for b,;, b;, ¢ can be integrated with
respect to 4 over the interval [0, 1] subject to the initial conditions
(7.6). However, one can see that this integration would be impossible
only if (7.7) could not be solved on approaching & =U* or if b, i
b; > e, ¢ for O » ¥ - 0. However, these difficulties are only
poss1ble for those values of ¥* for which the system (7.1), (7.2) either
loses its asymptotic stability on the average or v°(x, £, 7; O) increases
without limit at finite points x, £ for O > 0~ 0. In the first case, the
function v° will no longer be positive-definite for & -9* — 0. However,
these changes of v° are excluded, since for ¢ < #* the function »° is
equal to the optimum value of the functional J, which, at the points z,
¢ lying on a circle of unit radius, is un1form§y bounded over =10, 1]
both from below (due to the boundedness of the coefficients of the system
in (7.1), (7.2)) and from above (since, in our view, for the system (6.1),
(6.2) and consequently also for the system (7.1), (7.2)) a permissible
control ¢} exists for which the value of the functional I, is not less
than I,°, i.e. v° <1 9’ this perm1381hle control is obtained for the
system (7.1), (7.2) if we assume ¢(9) = & ¢ — (1 - §)¢, where ¢ is the

permissible control for the initial problem.

It follows from the above discussion that it is possible to extend
the solution of (7.6) right up to & = 1, i.e. it follows that the
optimum solution of the problem (6.3) does, in fact, exist.

In conclusion, we note that the numerical integration of the differ-
ential equations for b, b;, ¢ on ve={0, 1] can be used to determine
the approximate value o% the optimum Liapunov function v°
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